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Abstract

The ocular surface is the part of the visual system directly exposed to the environment, and
it comprises the cornea, the first refractive tissue layer, and its surrounding structures. The
ocular surface has evolved to keep the cornea smooth and wet, a prerequisite for proper
sight, and also protected. To this aim, the ocular surface is a bona fide mucosal niche with
an immune system capable of fighting dangerous pathogens. However, due to the
potentially harmful effects of uncontrolled inflammation, the ocular surface has several
mechanisms to keep the immune response in check. Specifically, the ocular surface is
maintained inflammation-free and functional by a particular form of peripheral tolerance
known as mucosal tolerance, markedly different from the immune privilege of intraocular
structures. Remarkably, conjunctival tolerance is akin to the oral and respiratory tolerance
mechanisms found in the gut and airways, respectively. And also similarly, this form of
immunoregulation in the eye is affected by aging just as it is in the digestive and respiratory
tracts. With aging comes an increased prevalence of immune-based ocular surface
disorders, which could be related to an age-related impairment of conjunctival tolerance. The
purpose of this review is to summarize the present knowledge of ocular mucosal tolerance
and how it is affected by the aging process in the light of the current literature on mucosal

immunoregulation of the gut and airways.
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1. Introduction

Ocular surface disease is a broad term for dry eye and other illnesses affecting the
front part of the eye such as Sjogren Syndrome (autoimmune dry eye), meibomian gland
dysfunction (a disorder affecting the oil-producing glands located within the eyelids), post-
refractive surgery dry eye, age-related dry eye, ocular graft-versus-host-disease, and others.
Additional ocular surface disorders of relevance in the elderly are ocular allergy and
microbial infections. Dry eye presents with ocular irritation, gritty sensation, and blurred
vision. Ocular surface disease is a frequent reason to seek eye care !, and using trade-off
research techniques, severe dry eye has been compared to severe angina in terms of
impact on quality of life by affected patients.’* Dry eye is one of the most common eye
diseases, with a reported prevalence of 5.5 to 15% worldwide. 57 Known risk factors for dry
eye disease include aging, contact lens wear, female sex, and autoimmunity.5 12 Dry eye
prevalence increases with every decade in women and men, although it is more prevalent in
women.® Because it affects more women than men, both sex and gender differences have
been implicated'3, although no definitive consensus has been achieved. Both innate and
adaptive immunity play a role in dry eye pathogenesis and a vicious circle of inflammation is

well established.#

The ocular surface is the part of the visual system directly exposed to the
environment, and it comprises the cornea, the first refractive tissue layer and the only
transparent tissue in the body, and its surrounding structures. The ocular surface has
evolved to keep the cornea smooth and wet, a prerequisite for proper sight, and protected.
To this aim, the ocular surface is a bona fide mucosal niche with an immune system capable
of mounting a strong response to fight dangerous pathogens. Given the potentially harmful
effects of uncontrolled inflammation leading to extensive fibrosis and corneal opacification,
the ocular surface has several mechanisms to keep the immune response in check to
preserve corneal clarity. This regulation is part of what is collectively known as peripheral
tolerance because it is how the immune system differentiates self from non-self-antigens
and prevents autoimmunity.'® Specifically, the ocular surface is maintained inflammation-

free and functional by a particular form of peripheral tolerance known as mucosal
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tolerance'®, which is also at work in the gut and in the airways. Aging of the immune system,
or immunosenescence, has been linked to increased frequency of infections, cancer, and
autoimmunity in the elderly.'”- ' For a comprehensive review of how aging affects the
specific components of the ocular immune system, see Galletti and de Paiva.'® Interestingly,
a dysregulated immune response underlies many ocular surface disorders that become
more prevalent in the elderly'®, suggesting mucosal tolerance in the ocular surface changes
with aging. Consistently, immunoregulation in the gut and in the airways changes as we age.
Thus, the purpose of this review is to summarize the present knowledge of ocular mucosal
tolerance in the context of peripheral immune tolerance of the eye and how it is affected by
the aging process. Because the eye is a unique organ that may be intricate to the
immunologist unfamiliar with ocular anatomy, we will address peripheral immune tolerance
mechanisms in its different sections. But since a considerable body of evidence has
emerged from studies of gastrointestinal and respiratory disorders in which age-related
immunoregulatory changes play a role, we will first review the literature to learn from other
mucosal sites where mucosal tolerance was characterized first and to a greater extent. Our
intent is to show differences and similarities in the immunoregulation of these three different
mucosal sites through aging. We also want to highlight how age-related perturbations of

ocular mucosal tolerance could participate in ocular surface disease development such as

dry eye.

2. Aging and mucosal tolerance in the gut and airways

All mucosal sites (gut, airways, ocular surface) are exposed to the environment to a
varying extent and thus need to cope with harmless and dangerous antigens of their own.
The set of regulatory mechanisms by which the mucosal immune system does not react
against the harmless foreign antigens it comes in contact with is known as mucosal
tolerance. It is evidently not a passive phenomenon where the immune system "does not
see" an antigen but follows a coordinated sequence of events where the antigen "is chosen

to be ignored" by the immune system.
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2a. Oral tolerance

Because any food is a foreign entity, the gastrointestinal tract has developed ways to
cope with this interaction, that is, to tolerate the non-self-antigens that are derived from food
protein. This regulation is termed oral tolerance and requires peripherally induced Foxp3*
Tregs.?0 Oral tolerance is crucial for optimal health and modulation of the gut immune
system, as shown by mice raised with an elementary diet devoid of dietary antigens: they
become more susceptible to developing food allergy upon introduction of a new antigen in
the diet than mice fed a conventional diet 2'. Oral tolerance can be evidenced in laboratory
animals if they are fed an antigen before parenteral immunization with the same protein.
When the antigen is absorbed in the intestines, the absence of inflammation and danger
signals indicate to the mucosal immune system that the antigen is not a threat, and
tolerance develops.?? First, an antigen present in the lumen of the gastrointestinal tract
needs to be captured by intraepithelial and lamina propria APCs; then, these APCs travel to
the lymph nodes guided by the CCR7-CCL19/CCL21 axis, where they induce tolerogenic T
cells.?® Intestinal goblet cells have been shown to deliver antigens to CD103+ lamina
propria DCs.?* These goblet cell-associated passages are critical for oral tolerance as mice
devoid of goblet cells do not develop tolerance to dietary antigens.?> For a thorough

discussion of the mechanisms underlying oral tolerance, see 26 and 0.

Factors such as age, dose, frequency, route of delivery, and intestinal microbiome
influence oral tolerance and maintenance.?’-30 Either a single high dose or repeated smaller
doses and oral administration of antigens are essential for oral tolerance development.3’
Also, intravenous or intraportal delivery of OVA does not induce the same immune response
as orally administered OVA, showing that intestinal uptake of the antigen is crucial.?®
Another important factor is age. Several studies have shown that aged mice have decreased
oral tolerance.?? 2% 3235 Qral OVA administration is sufficient to induce oral tolerance in
young (8-week old) mice 22 but middle-aged and elderly ("15.5 and 19-months old,
respectively) mice are refractory.3* 3% The humoral response to OVA is also impaired in aged
mice. In some studies, a progressive decrease in the humoral response was observed in

mice aged 9 months or older.2° 35 |n others, a lack of proper antibody levels was seen as
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early as 6-8 months of age.3¢ Interestingly, 15-month old mice that were orally immunized at
an early age showed a comparable humoral response to young mice 37, suggesting that
early vaccination is key for preserving proper antibody production in the elderly. Studies
have also shown that aged mice (>20 months of age) have an exaggerated cellular and
humoral response to orally administered OVA, suggesting that altered immune processes in
the elderly might lead to autoimmunity and inflammation.3® A decrease in DCs and changes
in Peyer's patches architecture, seen as early as 6-8 months of age, and T cell dysregulation

observed at 24 months have been implicated as mechanisms for disrupted oral tolerance.3

38, 39

Instances when oral tolerance mechanisms fail can have mild clinical consequences,
such as urticaria and skin rash, or become life-threatening situations with oral and laryngeal
edema, anaphylaxis, and cardiac arrest. Common food allergens are peanuts, nuts,
shellfish, and cow milk proteins*, which trigger IgE production. IgE-mediated food allergies
elicit mast cells and basophils that rapidly release histamine and vasoactive factors, leading
to the symptoms of hives, angioedema, bronchospasm, and anaphylaxis. Chronic forms of
oral tolerance disruption may be accompanied by vomiting, cramping, abdominal pain, and
diarrhea. Besides food avoidance, oral immunotherapy (which involves induction of oral
tolerance) has emerged as an option for treating certain allergies in children. For example,
oral immunotherapy for peanuts entails giving small, escalating doses of peanuts to a child

to increase the amount of food without triggering an allergic reaction. 4’

Food allergy is a burdensome health problem. Prevalence of food allergy is highest
among children, with reported rates varying between 2% to 26%, depending on the
population studied and the method used to define food allergy.*? 43 High incidence and
remission rates and over-reporting characterize this age group.*3 Although food allergies are
more frequent in young individuals, they can occur at any age. In a nation-wide USA study*4,
serological and clinical prevalence were highest in children 1-5 years (28.1% and 4.3%,
respectively) and progressively declined with age, reaching values of 13.0% and 1.3%,
respectively, in the 60+ age group. In another cross-sectional study of 109 people in a

Hungarian geriatric nursing home (mean age 77 years), specific IgE to food allergens was
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detected in 25% of residents and positive skin prick tests with food allergens correlated with
chronic alcohol consumption.#> Contrasting with children, the elderly tend to under-report
food allergy symptoms as well as other allergies.**%3 Despite the decrease in prevalence
with age, it is evident that food allergy still represents a significant health issue in the elderly.
Furthermore, food allergy in the young arises due to the immaturity of the gut mucosal
immune system, and this correlates with animal studies: neonatal mice cannot develop oral
tolerance to a fed antigen before 7 days of age.5* Contrastingly, aged mice lose their ability
to develop oral tolerance to newly introduced dietary antigens, as previously detailed.?2 29, 32-
35 Thus, food allergy in the elderly is less frequent but has a different underlying
pathophysiology than in children®: there is loss of oral tolerance to dietary antigens instead

of inability to develop oral tolerance to newly introduced dietary antigens.

Food allergy in the elderly relates to an impaired immune system
(immunosenescence) and is compounded by numerous physiological changes, including a
deficiency in iron, zinc, and vitamin D.4%>47 Gastric atrophy and anti-acid medication have
also been associated with increased food allergy in the elderly, probably because of
persistence of intact food allergens due to reduced digestive enzymatic activity.>® Also,
chronic alcohol consumption is linked to gastric atrophy and hypoacidity, pancreatitis, and a
direct cytotoxic effect on the gastrointestinal mucosa (leading to inflammation and decreased
barrier function), all of which may contribute to the increased association with food allergens
in the elderly.#® Interestingly, in the same study alcohol was not a risk factor for increased
skin test positivity for respiratory allergens, suggesting that its effect is locally restricted to
oral tolerance mechanisms and not to a generalized potentiation of Th2 responses.*®
However, this topic is controversial and there is inconsistency in several studies®,
warranting further research on the effect of drugs and medications on oral tolerance as we
age. At any rate, as evidenced by food allergy presenting in the elderly, failure of oral
tolerance in aging is not infrequent and the underlying mechanisms deserve additional

study.

Inflammatory bowel disease is another group of disorders in which oral tolerance is

affected.>” Inflammatory bowel disease patients cannot develop oral tolerance to newly fed
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antigens®®, exhibit signs of active immunization against common food antigens®®, and
display non-tolerant immune responses against gut microbiota.®® Although food-specific
immunity is not involved in inflammatory bowel disease pathogenesis®’, loss of gut mucosal
tolerance to food (i.e., oral tolerance) reflects a generalized disruption of the regulatory steps
that suppress inflammation towards harmless microbiota antigens in the gut, which is the
core pathophysiological mechanism of inflammatory bowel disease.®? In line with this,
restoration of oral tolerance to a food antigen (egg protein) by intravenous administration of
antigen-specific Tregs and subsequent feeding of the same antigen (meringue cakes)
showed results in a clinical trial involving inflammatory bowel disease patients.6® Thus,
inflammatory bowel disease, despite not having a higher prevalence in the elderly, still
constitutes a remarkable example of how dysregulated mucosal tolerance can drive local

inflammation in a mucosal site.%2

Conversely, studies have shown that oral tolerance can be used to prevent or
decrease some pathological states. Administration of heat shock proteins in experimental
models of atherosclerosis either at the time of initiation or after moderate disease
establishment can modify the size of atherosclerotic plaques through increased frequency of
CD4*Foxp3* Tregs. Aged (18-months) ApoE” mice immunized with mycobacterial heat
shock protein 65 and subjected to a high cholesterol diet showed atherosclerosis
progression. In contrast, oral administration of mycobacterial heat shock protein 65 before
immunization decreased the extension of plaques and increased the frequency of splenic

Tregs.6465

In summary, oral tolerance was the first mucosal tolerance mechanism described*?
and is the one most studied. Several factors affect how the gut immune system handles
food-derived and other antigens through the aging process, resulting in decreased or
abolished oral tolerance. Thus, aging profoundly impacts oral immunization, food allergy,
and other gastrointestinal disease states. Furthermore, because of the systemic influence of
the gut immune system®® 67 and the shared aspects of the mucosal immune responses,
some of these observations could also apply to other mucosal sites like the respiratory tract

and the ocular surface.
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2b. Mucosal tolerance in the airways

Due to the respiratory tract's continuous exposure to airborne antigens, mucosal
tolerance is highly relevant as a peripheral tolerance mechanism in the airways.%8 It was first
described in 198169, about 70 years later than oral tolerance.*® More recently, its breakdown
has been recognized as a key pathophysiological mechanism in allergic airway diseases like
allergic rhinitis and asthma.”® For example, psychological stress and cigarette smoking, two
environmental factors linked to asthma severity in patients, directly impair respiratory
tolerance in mice.”"- 72 Experimentally, both nasal and bronchial tolerance have been
described in animals. Nasal instillation or inhalation of aerosolized antigens can lead to
antigen presentation in cervical and peribronchial lymph nodes that drain the nasal cavity
and the lower airways, respectively.”® 74 This is possible because local DCs take up antigen
in the mucosal linings and then migrate relying on CCR7 guidance to the draining lymph
nodes.”* The upper and lower airways harbor 4 different DC populations: epithelial
CD103*DCs (conventional DC1 or cDC1), stromal CD11b*CD24*CD64- conventional DCs
(cDC2), monocyte-derived CD11b*CD24-CD64*DCs, and plasmacytoid B220*DCs (pDCs).”

: 76 Of these, cDC27¢ and pDCs’7 seem to be responsible for mucosal tolerance in the lungs.

Lung immune homeostasis depends on a network of interactions between immune
cells that include the airway epithelium, macrophages, neutrophils, and tissue-resident
lymphocytes, among other cell types [for a thorough review, see 78]. Contrasting the studies
on oral tolerance in young and aged animals (see previous section), no direct assessment of
respiratory mucosal tolerance in older individuals or animals has been published. However,
many studies have explored the effect of aging on the pulmonary immune response.’®
Aging dysregulates cytokine production in lung epithelial cells favoring pro-inflammatory
interleukin-18 and interleukin-6 release’, and conversely, DCs from aged subjects
contribute to airway inflammation by activating bronchial epithelial cells.8® Of note, aged
DCs have higher nuclear factor-kB activity®!, which is inversely associated with their
tolerogenic potential.82 The latter and other observations add to the dysfunction of DCs that
comes with age, which favors inflammation and loss of tolerance.®3 Also, the aged lung

microenvironment leads to a reduction in tissue-resident alveolar macrophages, which are
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better at resolving inflammation after injury.®* In a comparison of young and aged mice
sensitized with ovalbumin (OVA) as an antigen and then challenged with the same antigen
in the airways, the older mice developed less airway hyperresponsiveness but more
inflammation, eosinophilia, goblet cell hyperplasia, and interferon-y.85 Thus, just as is the
case for oral tolerance, respiratory tolerance is highly likely to be affected by aging, because
many of the mechanisms that underlie the tolerant mucosal immune response are similarly
changed by aging in the gut and the airways. However, specific animal studies about the

effect of aging on respiratory tolerance are missing.

Allergic airway disease is traditionally associated with young age, but it remains
highly prevalent (5-10%) throughout life.8¢ In a study of asthmatic patients over 60 years of
age, 10% had first developed asthma after their 60" birthday.8” Asthma in the elderly has
distinct clinical features that have been linked to oxidative stress and inflammaging, such as
increased neutrophilic infiltration and less atopy.® Similar considerations apply to allergic
rhinitis in advanced age®’, which are probably associated with an increase in Th2 responses
in the elderly.®® In a Finnish study of 8,000 respondents, incidence of allergic asthma
(defined by accompanying allergic rhinitis) decreased with age, but the incidence of non-
allergic asthma peaked in adulthood.® In another large European multicenter study,
occupational exposure was a significant risk factor for the development of new-onset asthma
in adults.®? As in both studies the subjects did not experience asthma during childhood, it is
tempting to speculate that changes in respiratory tolerance through aging could be
implicated in this phenomenon. In line with this, IgE sensitization to cat allergen (a known
aeroallergen) was associated with the development of new-onset asthma in a cohort of aged
men (mean age 61) followed for 3 years.?3 Also, in another study of elderly (60+ years)
asthma patients, 33% were positive for cat-specific IgE and 53% were positive for at least
one indoor allergen, that is, antigens to which they were almost continuously exposed.?* In
the already mentioned study of a Hungarian geriatric home population, 40% of residents
were positive for IgE specific for one or more of the 19 respiratory allergens tested, and this
trait was associated with smoking.*® In fact, smoking constitutes a risk factor for IgE

sensitization in aged subjects.%® Tobacco smoke activates several signaling pathways in
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bronchial epithelial cells, most prominently the nuclear factor-kB pathway, which triggers a
proinflammatory response® and is directly involved in mucosal tolerance induction or

abrogation in all mucosal surfaces. ¢

Taken all together, the findings summarized above support the notion that aging
impairs respiratory tolerance, as it has been firmly established for oral tolerance. Specific
studies are needed on the actual extent of respiratory mucosal tolerance loss with aging and

how it modulates allergic airway disorders because of the high translational impact.
3. Peripheral immune tolerance in the eye: is it all the same?

Since Medawar's observations that allogeneic skin grafts implanted in the anterior
chamber are not rejected %, it has been clear that the eye controls the immune response
within its domains. This feature, shared with the brain and the testes, has been termed
immune privilege.?%-192 Unsurprisingly, immune-privileged sites are operationally defined as
those where foreign tissue grafts survive indefinitely, contrasting with non-privileged sites
where such grafts undergo rapid immune rejection. This property indicates the existence of
active regulatory mechanisms that suppress immune responses, explaining how corneal
allografts in patients do not require systemic immunosuppression to remain viable. Immune
privilege could thus be interpreted as a site-specific form of peripheral immune tolerance’s,
i.e., the set of mechanisms through which the immune system differentiates self from non-
self-antigens and prevents autoimmunity. In the laboratory, the immune privilege of the eye
can be evidenced by a reaction termed anterior chamber-associated immune deviation
(ACAID): when an antigen, e.g., OVA, is injected into the anterior chamber of the eye, it sets
in motion an immune response that has unique features and a systemic reach. An
equivalent reaction seems to occur in ocular varicella-zoster patients.’®® Remarkable
progress has been made on the molecular and cellular basis of these observations beyond
the scope of this review and to which we will refer collectively as intraocular immunology

[see 104].

Despite the stark anatomical differences, there are many unifying aspects in the

immunology of the anterior and posterior segments of the eye®, the most important of which
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is the already mentioned existence of "immune privilege as the result of local tissue barriers
and immunosuppressive microenvironments."'%, A comparable posterior segment
equivalent of ACAID has been described as vitreous cavity-associated immune deviation',
and allogeneic retinal grafts placed in the vitreous cavity or the subretinal space are not
rejected.'9” Recently, evidence of immune surveillance in the lens has surfaced.®®
Unfortunately, this abundance of knowledge on intraocular immunology has come with the
notion that everything related to the eye also bears immune privilege, which is incorrect and
does not apply to the ocular surface (Figure. 1). This is a well-known fact in the clinic since
limbal allografts for ocular surface reconstruction, like other solid organ transplants, require
HLA typing and systemic immunosuppression.'%® Also, subconjunctival tissue allografts in

mice are quickly rejected and lead to immunization.%7

Although the ocular surface is not immune-privileged, it exhibits another form of
peripheral immune tolerance shared with every other mucosal site: mucosal tolerance.®: 20.
110-112 Mucosal tolerance is critical for immune homeostasis because the mucosal surfaces in
the gut, airways, and the eyes serve as barriers to the environment. Therefore, these sites
face a dilemma: to cope with commensal microbes, food, and airborne particles while at the
same time to attack invading pathogens.?%: "' Through mucosal tolerance, these organs
actively suppress the potential immune response against the myriad harmless antigens to
which they are continuously exposed, remaining functional to absorb nutrients, exchange air,
or refract light rays. Contrasting with immune privilege, mucosal tolerance can be
operationally defined as the active suppression of systemic immunization against a specific
antigen if such antigen is administered through a mucosal surface before the

immunization.20

Mucosal tolerance in the ocular surface can be evidenced by an assay similar to that

of ACAID, although the underlying immune mechanisms are different (Table 1).16 113 If a
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harmless antigen (one that does not elicit an inflammatory response in and of itself) is
applied to the ocular surface of mice, it is taken up by antigen-presenting cells (APC) that
migrate to the draining cervical lymph nodes, where they present it to naive T cells.’* In
homeostatic conditions, these APCs do not sense danger-associated signals from the
microenvironment along with the antigen, so they have a tolerogenic (anti-inflammatory)
program imprinted on them. Thus, when they interact with their cognate naive T cells, the
APC delivers additional signals that induce the T cells to differentiate into regulatory T cells
(Treg). Very few antigen-specific Tregs are involved in this response, but they are potent
enough to impact immune regulation profoundly. The assay further exploits this aspect to
evidence the presence of the Tregs. If these tolerized mice are then injected subcutaneously
with the same antigen mixed with an adjuvant that promotes a strong response in naive
animals, the antigen-specific Tregs will suppress the process, leading to poor immunization.
Thus, when the tolerized mice are later on challenged by either subcutaneous or intradermal
injection of the same antigen alone, instead of a vigorous localized hypersensitivity response
that peaks after two days, a small reaction (measured by swelling) develops. This challenge
reaction is known as delayed-type hypersensitivity (DTH) and is akin to the purified protein
derivative (PPD) skin test for tuberculosis diagnosis.'5 It involves a recall cellular response
to an antigen mediated by local uptake by tissue-resident APC and presentation to effector
CD4* T cells that release T helper (Th)1 cytokines, thus amplifying inflammation.3” In
tolerized mice, the previously generated Tregs suppress this reaction, hence the reduced
swelling readout. It should be emphasized that the DTH assay used to evidence mucosal
tolerance in immunological research is just a tool to assess the presence of either antigen-
specific Tregs or effector T cells. For a thorough review of the mechanisms underlying ocular

mucosal tolerance, see Galletti et al.. 16. 19
4. Conjunctival tolerance and aging

As in the respiratory and intestinal mucosa, delivery (i.e. instillation) of an antigen to
the ocular mucosa leads to tolerance, that is, the generation of Tregs and absence of clinical
inflammation signs upon subsequent administration of the antigen. Ocular mucosal (i.e.

conjunctival) tolerance was first described in 1994'2" and characterized a few years later',
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but its role in ocular pathophysiology was only addressed recently.?2-124 QOcular surface

Tregs, which underlie mucosal tolerance, have been reviewed elsewhere. 125

Disruption of ocular mucosal tolerance has been described in several ocular disease
models. First, it was observed after topical instillation of benzalkonium chloride.!?2
Benzalkonium chloride is a common preservative in eye drops, which are associated with
ocular surface toxicity. 26 Mechanistically, loss of mucosal tolerance to an exogenous
harmless antigen explains the increased incidence of ocular allergy, secondary dry eye, and
discomfort caused by this preservative.'?” Moreover, benzalkonium chloride-induced models
of dry eye have been described in mice'? and rabbits'2°, with the accompanying loss of
conjunctival goblet cells, corneal epithelial death, and CD4* T cell activation.’3® Perhaps
unsurprisingly, conjunctival tolerance is also affected by a corneal alkali burn'3!, as this

model is associated with extensive ocular surface damage and epithelial disruption.

Impaired conjunctival tolerance to a harmless antigen was also reported in various
models of dry eye,'23 124 132134 gn gutoimmune disease for which the specific antigens
remain uncharacterized but that can be reproduced in naive mice by adoptive transfer of
pathogenic CD4* T cells.'3%-138 |n the laboratory, dry eye can be modeled by different
methods. First, there are autoimmune animal strains that spontaneously develop eye and
lacrimal gland alterations at young age. 139142 Also, it can be modeled by subjecting young
mice to desiccating stress, that is, low humidity conditions with or without cholinergic
blockade of lacrimal gland secretion.43-145 Surgical excision of one or more of the glands
that contribute to the tear film in mice also causes ocular surface desiccation and a dry eye
phenotype comparable to the others methods.'#® Remarkably, loss of conjunctival tolerance
is another unifying feature of all these disease models. Of note, in the induced dry eye
models, mucosal tolerance to harmless antigens is impaired not immediately but after three
days of desiccating stress, suggesting that there is a threshold of ocular surface damage
that must be surpassed before this immunoregulatory mechanism is overcome.’32 133
Interestingly, middle-aged and elderly wild-type mice spontaneously develop dry eye
disease, displaying loss of conjunctival goblet cell density and corneal barrier disruption

(hallmarks of dry eye) as early as 9-12 months of age.™7. 148
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The putative antigens targeted by the pathogenic CD4* T cells that drive the disease
in dry eye remain elusive, although some studies have implicated kallikrein proteins.'4%-151 |n
experimental studies, this limitation is usually overcome by introducing a known harmless
foreign antigen (e.g., OVA) to the ocular surface as a surrogate ocular surface-derived
antigen. In an attempt to understand if changes in conjunctival tolerance also participate in
age-related dry eye, we evaluated conjunctival tolerance to OVA in mice of three different
ages (2, 9, and 24 months of age, Figure. 2A) following established protocols.!10. 122, 127,132,
133 Young mice that received OVA eye drops for three consecutive days before
immunization displayed less edema in the ears (low DTH), showing that they developed
mucosal tolerance to OVA (Figure. 2B). Interestingly, the 9-months-old group did not show a
statistical difference in ear thickness when exposed previously to OVA eye drops, that is, did
not develop conjunctival tolerance to OVA. The literature shows that loss of oral tolerance to
OVA is already present in mice aged 6-8 months.3® Concordant with previous studies, the
elderly group (24 months of age) did not show an adequate response to immunization® 152,
making the interpretation of the effect of prior topical OVA eye drops difficult in this age
group. Furthermore, an increased frequency of CD4*Foxp3* cells in ocular draining lymph
nodes has been reported, and a numerical increase in these cells might be compensating'53
for a qualitative effect in this age group. Another factor to consider is the DTH readout itself,
which is used to evidence antigen-specific memory T cells. However, cutaneous immune
responses (as is the case for the DTH) are dependent on adequate antigen presentation by
skin APCs, which are also decreased in the aged.'®* Altogether, these results suggest that

conjunctival tolerance is impaired by aging, as is also the case for oral tolerance.

Many changes in the aged ocular surface immune system may favor tolerance
disruption [for a complete review, see Galletti and de Paiva '9]. In the gut, retinoic acid-

loaded APCs participate in tolerance induction. Interestingly, a decrease in conjunctival
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aldehyde dehydrogenase activity (a critical step in retinoic acid metabolism) in APCs and a
higher number of activated APCs is observed in the aged conjunctiva.’®> This is
accompanied by an increasingly inflammatory milieu (elevated interleukin-18, MHC |,
interferon-y, and interleukin-12 mRNA transcripts). Aged APCs obtained from ocular draining
nodes have an activated phenotype and prime preferentially Th1 cells in antigen-
presentation assays in vitro.' Goblet cells constitute an epithelial cell subpopulation that is
highly immunoregulatory in the ocular surface’® and pivotal in mucosal tolerance induction
in the gut.2* 25 Conjunctival goblet cells also experience age-related changes in humans
and mice.'”® Mice deficient in conjunctival goblet cells have defective ocular mucosal
tolerance’?3 124 and spontaneously develop dry eye'? 157 which also suggests a
mechanistic association between ocular mucosal tolerance loss and dry eye pathogenesis.
Studies of conjunctival tolerance in Sjogren-Syndrome-like mice are lacking in the literature.
Aged lacrimal glands also display lymphocytic infiltration.'47. 148, 158 = Al| the aforementioned
mechanisms at work in the aged ocular surface have been linked to decreased or altered
Treg generation and impaired mucosal tolerance induction in other tissues.25 123, 124, 159-161
Thus, it is possible that a combination of a pro-inflammatory milieu, immunosenescence, and
age-related changes in APC, goblet cell loss, and altered Tregs influence conjunctival
tolerance. Disrupted conjunctival tolerance, in turn, may favor disease onset or progression
in the elderly. In line with this, pharmacological inhibition of nuclear factor-kB activity in the
ocular surface epithelium restores mucosal tolerance in two dry eye models while improving
the disease phenotype, further evidence of a pathophysiological link.132. 133 Remarkably, 12-
14-months-old mice display corneal staining phenotype and respond more slowly to topical
corticosteroids when subjected to experimental dry eye using the desiccating stress

model.162. 163

Thus, a breakdown in ocular mucosal tolerance to harmless antigens seems to be a
constant feature in diverse ocular surface disease models (benzalkonium chloride eye
drops, desiccating stress, lacrimal gland excision, mice devoid of goblet cells), and
remarkably, impairment of this homeostatic mechanism also occurs with aging. In humans,

advanced age is associated with an increased prevalence of several ocular surface
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disorders, among which dry eye is the most prominent. However, clinical data of ocular
surface disorders in the elderly does not always follow clear-cut categories, in part due to
symptom overlap between presentations. For instance, allergic conjunctivitis represents a
significant fraction (16%) of referrals of elderly patients for allergic disease*’, but it is under-
reported or under-recognized because ocular symptoms are considered part of
rhinoconjunctivitis.'®* Also, more subtle, chronic allergic reactions in the ocular surface of
aged patients may be misinterpreted because of concurrent use of topical eye medications
(with preservatives) and/or mistaken for dry eye.'?  Also, patients with allergic
rhinoconjunctivitis have increased tear osmolarity’®®, a finding implicated in dry eye
pathogenesis.'* 134 Conversely, dry eye patients are more likely to be sensitized to known
allergens and report symptoms typically associated with allergic rhinoconjunctivitis.'®® In
addition, the diagnosis of “elderly onset Sjogren syndrome,” a severe form of dry eye, is
controversial, with some groups suggesting that the signs and symptoms are only related to
aging of the immune system, while others affirming that is it indeed autoimmunity and should
be treated as such.4%-%3 At any rate, dysregulated ocular mucosal tolerance underlies the
corresponding animal models for all these presentations, including aging, which underscores
its pathogenic contribution. Still, much remains to be learned about the pathogenic

mechanisms specific to the aged ocular surface and its diseases.

5. Conclusions

The ocular surface immune system is radically different from that of inside the eye
globe. Instead of immune privilege, another form of peripheral tolerance is in effect to keep
inflammation in check in the outer ocular structures: mucosal tolerance. Conjunctival
tolerance is akin to the mucosal tolerance mechanisms found in the gut and airways, and
also similarly, this form of immunoregulation in the eye is affected by aging just as it is in the
digestive and respiratory tracts.  Although the extent of the experimental evidence and
clinical data for each location differs greatly, these three mucosal sites reviewed here

experience dysregulatory changes with aging that result in loss of mucosal tolerance, a
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highly relevant homeostatic function for mucosal health. The best case can be made for the
gastrointestinal tract, where there is ample experimental and clinical data supporting the
pathophysiological implications of oral tolerance loss in the elderly. In the airways, there is
also extensive clinical evidence suggesting disruption of respiratory tolerance in aged
subjects and there are several mechanistic studies in animal models that support this notion,
but conclusive exploration of mucosal tolerance status in the airways of aged mice is

lacking.

The case for the ocular surface, which is the actual purpose of this review, is further
complicated by the fact that the putative autoantigens of its most prominent immune
disease, dry eye, remain unidentified. There is considerable evidence of mucosal tolerance
disruption in several animal models of ocular surface disease, and here we also present new
data on how aging affects experimental induction of conjunctival tolerance in mice (Figure
2). As for the gut and the respiratory tract, there are also numerous mechanistic studies on
the effect of aging on specific components of the immune response of the ocular mucosa.™
Perhaps gut immunology, and more specifically inflammatory bowel disease, could serve as
a guide to future research into the mechanisms of dry eye in the elderly, given the
similarities outlined in this review and elsewhere'® between the two mucosal sites and
immune-based mucosal disorders, respectively. Thus, progress in the eye field could be

made by applying current knowledge of age-related changes in other mucosal sites.
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Table 1: Comparison between ocular mucosal tolerance and immune privilege

Ocular mucosal tolerance

Ocular immune privilege

Anatomical location

Ocular surface

Cornea, anterior chamber,
vitreous chamber, subretinal

space

APCs involved

CD11c* dendritic cells 114

F4/80*CD11b* macrophages

Route of APC exit from the

eye

Lymph (CCR7-dependant

chemotaxis) 116. 117

Blood 104

Location of antigen

presentation

Eye-draining lymph nodes''4

First thymus '8, then spleen
119

Mechanism of antigen

presentation

Lymph node: Tolerogenic
CD11c* DCs present antigen

to naive CD4* T cells

Thymus: F4/80*
macrophages present to NKT
cells through CD1d

Spleen: F4/80* macrophages
transfer antigenic peptides to
marginal zone B cells, then B
cells present them on MHC |
and MHC Il to CD8* and
CD4* T cells. NKTand yd T

cells are required.
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Result of antigen

presentation

Induction and expansion of
antigen-specific CD4*Foxp3*
Tregs

Induction and expansion of
antigen-specific CD4*
Foxp3*Tregs and CD8*
Foxp3*CD103* Tregs 20

Functional result

Systemic suppression of
antigen-specific effector T cell

responses

Systemic suppression of
antigen-specific effector T cell

responses
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Figure legends

Figure 1. Peripheral tolerance in the eye. The eye globe is delimited by the cornea
anteriorly and the sclera posteriorly. Within the eye, the lens separates the anterior chamber
(green-filled) from the vitreous cavity (orange-filled). The retina lines the inner surface of the
back of the eye globe, and the subretinal space is the virtual space between the neuroretina
and the retinal pigment epithelium. All these tissues and structures within the eye globe are
regarded as intraocular and have immune privilege, a site-specific form of peripheral
tolerance with unique features such as blood-borne antigen-presenting cells (APC) reaching
the thymus and spleen. Specific descriptions in the literature of intraocular immune privilege
for some intraocular structures are shown in green with their corresponding abbreviations
(ACAID: anterior chamber-associated immune deviation, VCAID: vitreous chamber-
associated immune deviation, SRAII: subretinal space-associated immune inhibition). By
contrast, the ocular surface (pink) is a collective term for the exposed portion of the eye and
comprises the cornea, the conjunctiva (the mucosal lining surrounding the cornea that
extends to the inner surface of the eyelids), the eyelids, and other tissues and structures not
depicted. The ocular surface is regarded as extraocular and, from an immunological
viewpoint, it exhibits mucosal tolerance: a peripheral tolerance mechanism common to every
mucosal lining that is based on antigen presentation in the lymph nodes and regulatory T

cells.

Figure 2. Ocular mucosal tolerance in aged mice. A. Schematic of experimental design in
mice of different ages: 2, 9, and 24 months (M). Conjunctival immune tolerance was
measured by delayed-type hypersensitivity (DTH) to OVA using the following protocol: OVA
eye drops were administered topically for 3 days (d1-3), then mice were immunized (Imm)
subcutaneously (s.c.) with OVA + complete Freund's adjuvant on day 8 and finally
challenged with the same antigen by intradermal (i.d) ear injection (OVA in the right ear and
PBS in the left ear) on day 15. Ear swelling was measured 48 hours later. (B) In vivo DTH
(ear swelling) measurements. Results are the difference between the antigen-injected and

PBS-injected ears of mice in each group. (n = 5/group, mean £ SEM, Kruskal-Wallis followed
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by Dunn's multiple comparisons test). These experiments were approved by the Institutional

Animal Care and Use Committees at Baylor College of Medicine.
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